The equation of a given line is given by $2x + 3y = 12$

1. The gradient of the line is $= \frac{-2}{3}$

2. The intercept on the x-axis is $= \frac{12}{2} = 6$

3. The intercept on the y-axis is $= \frac{12}{3} = 4$

4. Find the area of the triangle OAB, where O is the origin and A and B are the points where the line cuts the x-axis and the y-axis respectively.

Given that the equations of two lines L_1 and L_2 are:

$L_1 : 2x + y = 8$ and
$L_2 : 6y - mx = 3$

5. State the gradient of the line

6. If $L_1 \parallel L_2$ find m

7. If $L_1 \perp L_2$ find m
The equation of a given line is given by $2x + 3y = 12$

1. The gradient of the line is $= \frac{-3}{2}$

2. The intercept on the x-axis is $= 6$

3. The intercept on the y-axis is $= 4$

4. Find the area of the triangle OAB, where O is the origin and A and B are the points where the line cuts the x-axis and the y-axis respectively. 12 sq. Units

Given that the equations of two lines L_1 and L_2 are:
$L_1 : 2x + y = 8$ and $L_2 : 6y - mx = 3$

5. State the gradient of the line -2

6. If $L_1 \parallel L_2$ find m
 -12

7. If $L_1 \perp L_2$ find m
 3